98 research outputs found

    Morphological alterations in frontotemporal dementia:

    Get PDF
    The present thesis explores alterations in brain morphology in the neurodegenerative disorder of frontotemporal dementia (FTD). With the aim to improve the clinical diagnostics of FTD, we explored the diagnostic potential of measuring morphological alterations in the white matter by diffusion tensor imaging (DTI)- MRI, compared with the more commonly used assessment of grey matter thickness and volume. DTI-MRI was better at separating FTD cases from controls than grey matter parameters, and may thus be a promising supplementary imaging tool for the diagnostic work in FTD. We used DTI in combination with grey matter imaging to explore the morphological underpinnings of one of the central behavioural symptoms in FTD, disinhibition. Our results show that this symptom appears related to the integrity of an orbitofrontal-temporal network, as opposed to the prevailing view of a degeneration of the orbitofrontal cortex. An important question in FTD is what constitutes the morphological link between the molecular pathologies and the characteristic frontotemporal pattern of cortical degeneration. The von Economo neurons (VENs), are a particular type of neurons that are proposed to constitute this link. We confirm results from others, showing that these neurons are selectively degenerated in FTD. In addition we show that these neurons are more afflicted than pyramidal neurons in the superficial cortical layers, previously thought to be the most selectively degenerated in the cortex of FTD. The findings presented in this thesis will hopefully contribute both to improved diagnostics, understanding of clinico-pathological relationships, and of the pathophysiology of this condition

    Regional structural hypo- and hyperconnectivity of frontal-striatal and frontal-thalamic pathways in behavioral variant frontotemporal dementia

    Get PDF
    Behavioral variant frontotemporal dementia (bvFTD) has been predominantly considered as a frontotemporal cortical disease, with limited direct investigation of frontal–subcortical connections. We aim to characterize the grey and white matter components of frontal–thalamic and frontal–striatal circuits in bvFTD. Twenty‐four patients with bvFTD and 24 healthy controls underwent morphological and diffusion imaging. Subcortical structures were manually segmented according to published protocols. Probabilistic pathways were reconstructed separately from the dorsolateral, orbitofrontal and medial prefrontal cortex to the striatum and thalamus. Patients with bvFTD had smaller cortical and subcortical volumes, lower fractional anisotropy, and higher mean diffusivity metrics, which is consistent with disruptions in frontal–striatal–thalamic pathways. Unexpectedly, regional volumes of the striatum and thalamus connected to the medial prefrontal cortex were significantly larger in bvFTD (by 135% in the striatum, p = .032, and 217% in the thalamus, p = .004), despite smaller dorsolateral prefrontal cortex connected regional volumes (by 67% in the striatum, p = .002, and 65% in the thalamus, p = .020), and inconsistent changes in orbitofrontal cortex connected regions. These unanticipated findings may represent compensatory or maladaptive remodeling in bvFTD networks. Comparisons are made to other neuropsychiatric disorders suggesting a common mechanism of changes in frontal–subcortical networks; however, longitudinal studies are necessary to test this hypothesis.Miller Family Bridgewater Illawarra Health and Medical Research Initiative Summer Scholarship; The Swedish Alzheimer foundation; Thureus foundation; The Swedish Society for Medical Research; The Bente Rexed Gersteds Foundation for Brain Researc

    Plasma neurofilament light in behavioural variant frontotemporal dementia compared to mood and psychotic disorders

    Get PDF
    OBJECTIVE: Blood biomarkers of neuronal injury such as neurofilament light (NfL) show promise to improve diagnosis of neurodegenerative disorders and distinguish neurodegenerative from primary psychiatric disorders (PPD). This study investigated the diagnostic utility of plasma NfL to differentiate behavioural variant frontotemporal dementia (bvFTD, a neurodegenerative disorder commonly misdiagnosed initially as PPD), from PPD, and performance of large normative/reference data sets and models. METHODS: Plasma NfL was analysed in major depressive disorder (MDD, n = 42), bipolar affective disorder (BPAD, n = 121), treatment-resistant schizophrenia (TRS, n = 82), bvFTD (n = 22), and compared to the reference cohort (Control Group 2, n = 1926, using GAMLSS modelling), and age-matched controls (Control Group 1, n = 96, using general linear models). RESULTS: Large differences were seen between bvFTD (mean NfL 34.9 pg/mL) and all PPDs and controls (all < 11 pg/mL). NfL distinguished bvFTD from PPD with high accuracy, sensitivity (86%), and specificity (88%). GAMLSS models using reference Control Group 2 facilitated precision interpretation of individual levels, while performing equally to or outperforming models using local controls. Slightly higher NfL levels were found in BPAD, compared to controls and TRS. CONCLUSIONS: This study adds further evidence on the diagnostic utility of NfL to distinguish bvFTD from PPD of high clinical relevance to a bvFTD differential diagnosis, and includes the largest cohort of BPAD to date. Using large reference cohorts, GAMLSS modelling and the interactive Internet-based application we developed, may have important implications for future research and clinical translation. Studies are underway investigating utility of plasma NfL in diverse neurodegenerative and primary psychiatric conditions in real-world clinical settings

    Clinical value of cerebrospinal fluid neurofilament light chain in semantic dementia

    Get PDF
    © Author(s) (or their employer(s)) 2019. Re-use permitted under CC BY. Published by BMJ. This is an open access article distributed in accordance with the Creative Commons Attribution 4.0 Unported (CC BY 4.0) license, which permits others to copy, redistribute, remix, transform and build upon this work for any purpose, provided the original work is properly cited, a link to the licence is given, and indication of whether changes were made. See: https://creativecommons.org/licenses/by/4.0/.Background: Semantic dementia (SD) is a neurodegenerative disorder characterised by progressive language problems falling within the clinicopathological spectrum of frontotemporal lobar degeneration (FTLD). The development of disease-modifying agents may be facilitated by the relative clinical and pathological homogeneity of SD, but we need robust monitoring biomarkers to measure their efficacy. In different FTLD subtypes, neurofilament light chain (NfL) is a promising marker, therefore we investigated the utility of cerebrospinal fluid (CSF) NfL in SD. Methods: This large retrospective multicentre study compared cross-sectional CSF NfL levels of 162 patients with SD with 65 controls. CSF NfL levels of patients were correlated with clinical parameters (including survival), neuropsychological test scores and regional grey matter atrophy (including longitudinal data in a subset). Results: CSF NfL levels were significantly higher in patients with SD (median: 2326 pg/mL, IQR: 1628-3593) than in controls (577 (446-766), p<0.001). Higher CSF NfL levels were moderately associated with naming impairment as measured by the Boston Naming Test (rs =-0.32, p=0.002) and with smaller grey matter volume of the parahippocampal gyri (rs =-0.31, p=0.004). However, cross-sectional CSF NfL levels were not associated with progression of grey matter atrophy and did not predict survival. Conclusion: CSF NfL is a promising biomarker in the diagnostic process of SD, although it has limited cross-sectional monitoring or prognostic abilities.This study was funded by a Memorabel grant from Deltaplan Dementie (The Netherlands Organisation for Health Research and Development, and Alzheimer Nederland grant number 7330598105), National Institutes of Health (Grants AG010124, AG032953, AG043503, NS088341, AG017586, AG052943, AG038490), the Wyncote Foundation, Dana Foundation, Brightfocus Foundation, Penn Institute on Aging, Pla estratègic de recerca i innovació en salut 2016-2020, Catalan Department of Health (grant number SLT002/16/00408), Italian Ministry of Health (Ricerca Corrente) and the German Federal Ministry of Education and Research (FTLDc 01GI1007A). MS was supported by the Else Kröner-Fresenius-Stiftung. CW was supported by the Vaillant Stiftunginfo:eu-repo/semantics/publishedVersio

    Greater loss of von Economo neurons than loss of layer II and III neurons in behavioral variant frontotemporal dementia.

    No full text
    Previous studies have shown a selective reduction of von Economo neurons (VENs) in behavioral variant frontotemporal dementia (bvFTD). However, the alleged selectivity rests on the comparison between VENs and other neurons in cortical layer V, while it has been established that neurons in the superficial cortical layers (I-III) are particularly affected in bvFTD. The purpose of this study was to examine loss the loss of VENs in comparison with that of non-VEN-neurons of superficial cortical layers. VENs and non-VEN-neurons of cortical layer V and layers II+III were quantified in the anterior cingulate cortex in 16 cases of bvFTD, 12 non-demented controls and 10 cases of Alzheimer's disease (AD). In bvFTD VENs were more depleted than non-VEN-neurons of layers V and II+III. Also, non-VEN-neurons of layer II+III showed a greater density reduction than those of layer V in bvFTD. VEN density was also reduced in AD, albeit to a lesser extent than in bvFTD, and the differences between bvFTD and AD were only significant when relating VEN loss to that of layer V neurons. Our study strengthens the view of VENs as a particularly sensitive neuronal type of bvFTD, and appears to be on a continuum with the loss of other neurons both in bvFTD and between conditions

    Von Economo neurons are selectively targeted in frontotemporal dementia.

    Get PDF
    Von Economo neurons (VEN) are bipolar neurons located in the anterior cingulate cortex (ACC) and the frontoinsular cortex (FI), areas affected early in behavioural variant frontotemporal dementia (bvFTD), in which VEN may constitute a selectively vulnerable cellular population. Aim A previous study has shown a selective loss of VEN in FTD above other neurons in the ACC of FTD. The aim of this study was to confirm this finding in a larger cohort, using a different methodology, and to examine VEN loss in relation to neuropathological severity and molecular pathology. Methods VEN and neighbouring neurons (NN) were quantified in layer Va and Vb of the right dorsal anterior cingulate cortex in 21 cases of behavioural variant FTD, 10 cases of Alzheimer's disease (AD) and 10 non-demented controls (NDC). Results A marked VEN reduction was seen in all FTD cases. In the neuropathologically early cases of FTD (n=13), VEN/10000 NN was significantly reduced by 53 % compared with NDC (p<0.001) and 41% compared with AD (p=0.019), whereas AD patients showed a non-significant 30% reduction of VEN/10000 NN compared with NDC. VEN reduction was present in all protein pathology subgroups. Discussion In conclusion, this study confirms selective sensitivity of VEN in FTD and suggests that VEN loss is an early event in the neurodegenerative process
    corecore